Tutorial
4 min read

Flink with a Metadata Catalog

Have you worked with Flink SQL or Flink Table API? Do you find it frustrating to manage sources and sinks across different projects or repositories, along with all the properties of the tables? How do you prevent duplication of table definitions? While platforms like Ververica offer metadata catalogs, what if you don't have access to them?

Here's a viable alternative: the reliable old Hive Metastore Service (HMS). I will walk you through the entire process and demonstrate how to seamlessly set up and work with Flink and HMS. If you're interested, read on!

Setup HMS

The Hive Metastore is a standalone service designed to manage metadata, including table definitions, partitions, properties and statistics. While it's well-known in the Spark community, it can also be valuable for Flink developers.

By default, the Hive Metastore uses Apache Derby as its storage backend, but it's possible to configure it to use any JDBC-compatible database. For this example, I've opted to use PostgresDB.

To install the Hive Metastore, follow these steps:

  • Install the Hadoop package.
  • Install the standalone Hive Metastore.
  • Install the JDBC driver for your chosen database.

Configuration is provided via the hive-site.xml and metastore-site.xml files. To start the Hive Metastore, execute the following command:

/opt/hive-metastore/bin/schematool -dbType postgres

You can use the -validate flag to validate the database schema and -initSchema if it's the first time you're running it.

The full example as a docker image is available here. You can deploy it using a helm chart, published here (remember to set up Postgres db).

Flink dependencies

Flink and Hadoop always lead to dependency conflicts. This problem can be solved by shadowing packages.

I found this worked by adding the following to Flink libraries:

The next step is the hive-site.xml configuration file. I created it in the /home/maciej/hive directory.

<configuration>
    <property>
        <name>hive.metastore.uris</name>
        <value>thrift://hive-metastore.hms.svc.cluster.local:9083</value>
        <description>IP address (or fully-qualified domain name) and port of the metastore host</description>
    </property>


    <property>
        <name>hive.metastore.schema.verification</name>
        <value>true</value>
    </property>
</configuration>

Flink Table API/SQL

To use HMS, you need to define your catalog in Flink (pointing to a directory with hive-site.xml) and set it:

CREATE CATALOG hms_example WITH (
    'type' = 'hive',
    -- 'default-database' = 'default',
    'hive-conf-dir' = '/home/maciej/hive'
);
USE CATALOG hms_example;

Now you have access to all of the table’s definitions (e.g. list them by SHOW TABLES). If you create a new table it will be added to HMS and be available in the other Flink jobs.

/** JOB 1 */
CREATE TABLE table_a (
    id INT,
    description STRING
) with (
    'connector'='datagen'
)
/** JOB 2 */
SHOW TABLES
/** JOB 2 */
SELECT * FROM table_a LIMIT 5

Security

The hive server supports multiple security mechanisms to control access to data. It can be integrated with Kerberos or LDAP to provide Single Sign-On (SSO) authentication. Access to tables can be defined using Storage-Based Authorization (access to databases, tables and partitions based on the privileges defined in the storage), SQL Standards-Based Authorization (fine-grained access granted via SQL) or Apache Ranger.

SQL-based, Ranger, or Hive's default authorization model will be enforced during the query compilation time by the Hive server. However, this is outside the control of HMS and therefore cannot be used with the Flink framework.

Only Storage-Based Authorization falls under HMS's responsibility and could be used in conjunction with Flink, although the extent of its usefulness is limited.

HMS is built on top of an RDBMS. It's possible to create users with different rights, such as one with read-write (RW) access and another with read-only (RO) access. This way, you can protect your metadata from accidental modifications.

Please note that all of the table’s properties are accessible to all jobs, and any credentials can be easily read. Granting access to HMS grants access to all underlying passwords.

That’s all

I hope that you find it easy to set up and use HMS with Flink. It’s beneficial for managing the tables’ definitions between Flink jobs, projects, or repositories, separating the configuration from SQL code. Need help with Flink? Sign up for a free consultation with one of our experts.

streaming
apache flink
flink
flink sql
13 August 2024

Want more? Check our articles

trucaller getindata control incoming calls cloud journey
Success Stories

Truecaller - armed with data analytics to control incoming calls

Building a modern analytics environment is a strategic, long-term, iterative process of continuous improvement rather than a one-off project. The…

Read more
runningkedroeverywhereobszar roboczy 1 4
Tutorial

Running Kedro… everywhere? Machine Learning Pipelines on Kubeflow, Vertex AI, Azure and Airflow

Building reliable machine learning pipelines puts a heavy burden on Data Scientists and Machine Learning engineers. It’s fairly easy to kick-off any…

Read more
getindata nifi ingestion universe made out flow files nifi architecture big data
Tutorial

NiFi Ingestion Blog Series. PART IV - Universe made out of flow files - NiFi architecture

Apache NiFi, a big data processing engine with graphical WebUI, was created to give non-programmers the ability to swiftly and codelessly create data…

Read more
run your first private llm on gcpobszar roboczy 1 4
Tutorial

Run your first, private Large Language Model (LLM) on Google Cloud Platform

What are Large Language Models (LLMs)? You want to build a private LLM-based assistant to generate the financial report summary. Although Large…

Read more
saleslstronaobszar roboczy 1 100
Tutorial

Power of Big Data: Sales

In the first part of the series "Power of Big Data", I wrote about how Big Data can influence the development of marketing activities and how it can…

Read more
getindata blog nifi tomasz nazarewicz
Tutorial

NiFi Scripted Components - the missing link between scripts and fully custom stuff

Custom components As we probably know, the biggest strength of Apache Nifi is the large amount of ready-to-use components. There are, of course…

Read more

Contact us

Interested in our solutions?
Contact us!

Together, we will select the best Big Data solutions for your organization and build a project that will have a real impact on your organization.


What did you find most impressive about GetInData?

They did a very good job in finding people that fitted in Acast both technically as well as culturally.
Type the form or send a e-mail: hello@getindata.com
The administrator of your personal data is GetInData Poland Sp. z o.o. with its registered seat in Warsaw (02-508), 39/20 Pulawska St. Your data is processed for the purpose of provision of electronic services in accordance with the Terms & Conditions. For more information on personal data processing and your rights please see Privacy Policy.

By submitting this form, you agree to our Terms & Conditions and Privacy Policy